Call, Apply and Bind attach this into the function.
Bind:

e Use bind when you want the function set this.value now and execute function later.
o Itis useful in events.

var personl {firstName: 'Gaurav', lastName: 'Walia'};
var person? = {firstMame: 'Miharika', lastName: 'Bhalla‘'};

function say(greeting) {
console.log(greeting + " ' + this.firstMame + " ' + this.lastName);

r.bind(personl);
var sayHelloNiharika = say.bind(person2);

sayHelloGaurav(}; // Hello Gaurav Walia
; /f Hello Niharika Bhalla

Call:

e Use call when you want to invoke the function immediately.
e |t allows to pass arguments one by one as parenthesis.

var personl {firstName: "Gaurav', lastName: ‘Walia'};
var person? = {firstName: "Miharika', lastMName: "Bhalla'};

function say(greeting) {
console. log{greeting + * ' + this.firsthame + * * + this.lastName);

say.call{personl, "Hello'}; // Hello Gaurav Walia
say.call{person2?, 'Hello'}; // Hello Miharika Bhalla




Apply:

e Like call, use call when you want to invoke the function immediately.
e It allows to pass arguments as array as parenthesis.

var personl {firstName: 'Gaurav', lastName: 'Walia'};
var person? = {firstMame: 'Niharika', lastMame: 'Bhalla'};

function say(greeting) {
console.log(greeting + * ' + this.firstName +

+ this.lastName);

apply(personl, ['Hello']); // Hello Gaurav Walia
.apply({person2, ['Hello']); // Hello Niharika Bhalla

When To Use Each:

e Call and apply are pretty interchangeable. Just decide whether it’s easier to send in an array or a
comma separated list of arguments.

o Remember which one is which by remembering that Call is for comma (separated list) and Apply
is for Array.

e Bind is a bit different. It returns a new function. Call and Apply execute the current function
immediately.

e Bindis used for events like onClick where we don’t know when they’ll be fired but we know what
context we want them to have.



